Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polybaric Evolution of Calc-alkaline Magmas from Nisyros, Southeastern Hellenic Arc, Greece

Identifieur interne : 000440 ( Main/Exploration ); précédent : 000439; suivant : 000441

Polybaric Evolution of Calc-alkaline Magmas from Nisyros, Southeastern Hellenic Arc, Greece

Auteurs : G. Paul Wyers [États-Unis, Pays-Bas] ; Michael Barton [États-Unis]

Source :

RBID : ISTEX:72EE02BDE14752686469FA150E50C7E155DF7237

Descripteurs français

English descriptors

Abstract

The lavas of Nisyros were erupted between about 0·2 m.y B.P. and 1422 A.D., and range in composition from basaltic andesite to rhyodacite. Most were erupted prior to caldera collapse (exact date unknown), and the post-caldera lavas are petrographically (presence of strongly resorbed phenocrysts) and chemically (lower TiO2 K2O, P2O5, and LIL elements) distinct from the pre-caldera lavas. The pre-caldera lavas do not form a continuous series since lavas with SiO2 contents between 60 and 66 wt.% are absent. Nevertheless, major element variations demonstrate that fractional crystalliz ation (involving removal of olivine, dinopyroxene, plagioclase, and Fe-Ti oxide from the basaltic andesites and andesites and plagioclase, clinopyroxene, hypersthene, Ti-magnetite, ilmenite, apatite, and zircon from the dacites and rhyodacites) played a major role in the evolution of the pre-caldera lavas. Several lines of evidence indicate that other processes were also important in magma evolution: (1) Quantitative modeling of major element data shows that phenocryst phases of unlikely composi tion or unrealistic assemblages of phenocryst phases are required to relate the dacites and rhyodacites to the basaltic andesites and andesites; (2) The proportions of olivine and clinopyroxene required in quantitative models for the initial stages of evolution differ from those observed petrographically and this is not likely to reflect either differential rates of crystal settling or the curvature of cotectics along which liquids of basaltic andesite to andesite composition lie; (3) The concentrations of Rb, Cs, Ba, La, Sm, Eu, and Th in the rhyod.acites are too high for these lavas to be related to the dacites by fractional crystallization alone; and (4) 87Sr/86Sr ratios for the andesites and rhyodacites are higher than those for the basaltic andesites and dacites, respectively. It is shown that fractional crystallization was accompanied by assimilation, and that magma mixing played a minor role (if any) in the evolution of the pre-caldera lavas. Trace element and isotopic data indicate that the andesites evolved from the basaltic andesites by AFC involving average crust or upper crust, whereas the rhyodacites evolved from the dacites by AFC involving lower crust. Additional evidence for polybaric evolution is provided by the occurrence of distinct Ab-rich cores of plagioclase phenocrysts in the dacites and rhyodacites, which record a period of high pressure crystallization, and by the occurrence of both normal and reverse-zoned phenocrysts in the basaltic andesites and andesites. Furthermore, calculated pressures of crystallization are ˜8 kb for the dacites and rhyodacites and 3·5–4 kb for the basaltic andesites and andesites. It is concluded that the dacites and rhyodacites evolved via AFC from basaltic andesites and andesites largely in chambers sited near the base of the crust whereas the basaltic andesites and andesites mostly evolved in chambers sited at mid-crustal levels. Eruption from different chambers explains the compositional gap in the chemistry of the pre-caldera lavas since eruptive products represent a more or less random sampling of residual liquids which separate (via filter pressing) from bodies of crystallizing magma at various depths. Magma mixing was important in the evolution of the post-caldera lavas, but geochemical data require that these magmas evolved from parental magmas which were derived from a more refractory source than the parental magmas to the pre-caldera lavas.

Url:
DOI: 10.1093/petrology/30.1.1


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Polybaric Evolution of Calc-alkaline Magmas from Nisyros, Southeastern Hellenic Arc, Greece</title>
<author>
<name sortKey="Wyers, G Paul" sort="Wyers, G Paul" uniqKey="Wyers G" first="G. Paul" last="Wyers">G. Paul Wyers</name>
</author>
<author>
<name sortKey="Barton, Michael" sort="Barton, Michael" uniqKey="Barton M" first="Michael" last="Barton">Michael Barton</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:72EE02BDE14752686469FA150E50C7E155DF7237</idno>
<date when="1989" year="1989">1989</date>
<idno type="doi">10.1093/petrology/30.1.1</idno>
<idno type="url">https://api.istex.fr/document/72EE02BDE14752686469FA150E50C7E155DF7237/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000013</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000013</idno>
<idno type="wicri:Area/Istex/Curation">000013</idno>
<idno type="wicri:Area/Istex/Checkpoint">000367</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000367</idno>
<idno type="wicri:doubleKey">0022-3530:1989:Wyers G:polybaric:evolution:of</idno>
<idno type="wicri:Area/Main/Merge">000458</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:89-0216108</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000068</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000056</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000066</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000066</idno>
<idno type="wicri:doubleKey">0022-3530:1989:Wyers G:polybaric:evolution:of</idno>
<idno type="wicri:Area/Main/Merge">000465</idno>
<idno type="wicri:Area/Main/Curation">000440</idno>
<idno type="wicri:Area/Main/Exploration">000440</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Polybaric Evolution of Calc-alkaline Magmas from Nisyros, Southeastern Hellenic Arc, Greece</title>
<author>
<name sortKey="Wyers, G Paul" sort="Wyers, G Paul" uniqKey="Wyers G" first="G. Paul" last="Wyers">G. Paul Wyers</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>Department of Geology and Mineralogy, The Ohio State University, Colwnbus</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>*Present address: Netherlands Energy Research Foundation (ECN), P.O. Box 1, 1755 ZG Petten</wicri:regionArea>
<wicri:noRegion>1755 ZG Petten</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barton, Michael" sort="Barton, Michael" uniqKey="Barton M" first="Michael" last="Barton">Michael Barton</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>Department of Geology and Mineralogy, The Ohio State University, Colwnbus</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Petrology</title>
<idno type="ISSN">0022-3530</idno>
<idno type="eISSN">1460-2415</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="1989-02">1989-02</date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="37">37</biblScope>
</imprint>
<idno type="ISSN">0022-3530</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-3530</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Andesite</term>
<term>Andesites</term>
<term>Assimilation</term>
<term>Calc-alkalic composition</term>
<term>Dacite</term>
<term>Dacites</term>
<term>Depth</term>
<term>Fractional crystallization</term>
<term>Greek Aegean Islands</term>
<term>Magma chambers</term>
<term>Major elements</term>
<term>Rare earths</term>
<term>Rhyodacites</term>
<term>Trace elements</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Analyse majeurs</term>
<term>Analyse élément trace</term>
<term>Andésite</term>
<term>Assimilation</term>
<term>Chambre magmatique</term>
<term>Composition calcoalcaline</term>
<term>Cristallisation fractionnée</term>
<term>Dacite</term>
<term>Iles Egée Grèce</term>
<term>Profondeur</term>
<term>Rhyodacite</term>
<term>Terre rare</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The lavas of Nisyros were erupted between about 0·2 m.y B.P. and 1422 A.D., and range in composition from basaltic andesite to rhyodacite. Most were erupted prior to caldera collapse (exact date unknown), and the post-caldera lavas are petrographically (presence of strongly resorbed phenocrysts) and chemically (lower TiO2 K2O, P2O5, and LIL elements) distinct from the pre-caldera lavas. The pre-caldera lavas do not form a continuous series since lavas with SiO2 contents between 60 and 66 wt.% are absent. Nevertheless, major element variations demonstrate that fractional crystalliz ation (involving removal of olivine, dinopyroxene, plagioclase, and Fe-Ti oxide from the basaltic andesites and andesites and plagioclase, clinopyroxene, hypersthene, Ti-magnetite, ilmenite, apatite, and zircon from the dacites and rhyodacites) played a major role in the evolution of the pre-caldera lavas. Several lines of evidence indicate that other processes were also important in magma evolution: (1) Quantitative modeling of major element data shows that phenocryst phases of unlikely composi tion or unrealistic assemblages of phenocryst phases are required to relate the dacites and rhyodacites to the basaltic andesites and andesites; (2) The proportions of olivine and clinopyroxene required in quantitative models for the initial stages of evolution differ from those observed petrographically and this is not likely to reflect either differential rates of crystal settling or the curvature of cotectics along which liquids of basaltic andesite to andesite composition lie; (3) The concentrations of Rb, Cs, Ba, La, Sm, Eu, and Th in the rhyod.acites are too high for these lavas to be related to the dacites by fractional crystallization alone; and (4) 87Sr/86Sr ratios for the andesites and rhyodacites are higher than those for the basaltic andesites and dacites, respectively. It is shown that fractional crystallization was accompanied by assimilation, and that magma mixing played a minor role (if any) in the evolution of the pre-caldera lavas. Trace element and isotopic data indicate that the andesites evolved from the basaltic andesites by AFC involving average crust or upper crust, whereas the rhyodacites evolved from the dacites by AFC involving lower crust. Additional evidence for polybaric evolution is provided by the occurrence of distinct Ab-rich cores of plagioclase phenocrysts in the dacites and rhyodacites, which record a period of high pressure crystallization, and by the occurrence of both normal and reverse-zoned phenocrysts in the basaltic andesites and andesites. Furthermore, calculated pressures of crystallization are ˜8 kb for the dacites and rhyodacites and 3·5–4 kb for the basaltic andesites and andesites. It is concluded that the dacites and rhyodacites evolved via AFC from basaltic andesites and andesites largely in chambers sited near the base of the crust whereas the basaltic andesites and andesites mostly evolved in chambers sited at mid-crustal levels. Eruption from different chambers explains the compositional gap in the chemistry of the pre-caldera lavas since eruptive products represent a more or less random sampling of residual liquids which separate (via filter pressing) from bodies of crystallizing magma at various depths. Magma mixing was important in the evolution of the post-caldera lavas, but geochemical data require that these magmas evolved from parental magmas which were derived from a more refractory source than the parental magmas to the pre-caldera lavas.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Wyers, G Paul" sort="Wyers, G Paul" uniqKey="Wyers G" first="G. Paul" last="Wyers">G. Paul Wyers</name>
</region>
<name sortKey="Barton, Michael" sort="Barton, Michael" uniqKey="Barton M" first="Michael" last="Barton">Michael Barton</name>
</country>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Wyers, G Paul" sort="Wyers, G Paul" uniqKey="Wyers G" first="G. Paul" last="Wyers">G. Paul Wyers</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000440 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000440 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:72EE02BDE14752686469FA150E50C7E155DF7237
   |texte=   Polybaric Evolution of Calc-alkaline Magmas from Nisyros, Southeastern Hellenic Arc, Greece
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021